Dyserythropoietic Anaemia (Qualitative)

Def:

Dyserythropoiesis leads to production of abnormal erythroid series, some of them:

die in BM (ineffective erythropoiesis)

Others: mature & reach the circulation but have a short life span

Congenital Dyserythropoietic Anaemia (CDA)

Def, Ch ch :

It is a hereditary refractory anaemia ch ch by: -ineffective erythropoiesis -erythroid multinuclearity (abnormal cs) -2nd tissue siderosis **Types:**

Type I, II & III.

These anaemia (3 types) have common features:

- Mild to severe anaemia presented early in life.
- Splenomegaly.
- Evidence of ineffective erythropoiesis.
- Ferrokinetics: rapid plasma clearance. accumulation of radioactivity in BM.
 - ↑ iron in BM.
 - \downarrow red cell iron utilization.
- RBCs life span N or slightly \downarrow
- Retics : N or slightly
- CBC: anaemia, anisocytosis, poikilocytosis & macrocytes

CDA type I

CDA type II

CDA type III familial

CDA variants

Table 1:BM:

	Туре І	Type II	Type III
		(HEMPAS)	
It affects:	Pro erythroblasts &	Late	All erythroid series
	early normoblasts	erythroblasts	
By light	Magaloblastic	Ri nuclearity	Multi nuclearity un to
microscope	changes.	or multi	12 nucleii
microscope.	Nucleo-cytoplasmic	nuclearity (2-7	-Giant erythroblast
	dissociation, stippled	n)	-Basophilic stippling or
	chromatin,	-Karyorrhexis	siderotic granules
	internuclear bridges	(degenerative	-Must be D.D from M6
	-Macrocytosis	changes)	(x blasts)
	-		
By electron	Nuclear membrane	Excess	Clefts & blebs up to
microscope:	integrity is lost e'	endoplasmic	nuclear bridges (due to
	oozing of nuclear	reticulum	abn. in nuclear division
	material.	appearing as	(incomplete separation)
	-Ribosomes r attached	double cell	-Auto lytic areas in
	to nuclear membrane	membrane.	cytoplasm
	-Widened nuclear		-Iron filled
	pores		mitochondria
	-Presence of		
	cytoplasmic		
Tubouitonoon	microtubules	A D	
inneritance:	AK	AK	AD
Pathogenesis:	Main defect is in	Abnormal	
	nuclear membrane e'	RBC	
	failure of protein	membrane	
	synthesis.	protein (band	
		3,4.5) →	
		[↑] Susceptibility	
		to lysis)	

Table 2:

	Acidified Lysis tes tes	d Serum t (Ham's st)	erum Anti I Ham's		Anti i		Sucrose Lysis test
	Donor Serum	Patient Serum	Lysis	Aggluti nation	Lysis	Agglutin ation	
Normal adult	-	-	-	±	-	-	-
PNH	+++	++	+++	+	±	±	+++
CDA Type I	-	-	±	±	-	-	-
Type II (HEMPS)	+	-	++	++	++	++	-
Type III	_	_	++	+++	++	+++	-

•Serology: Comparisons of in vitro lysis test:

Acidified serum lysis test (Ham's test):

Acidification of serum to a ph of $6.5-7 \rightarrow$ activates Alternative pathway of complement.

PNH:

Lysis in both patient & donor serum (no protective mechanism against complement mediated lysis) due to Red Cell defect (sensitivity to lysis by complement).

Normal cells: No lysis.

HEMPAS:

Lysis in donor's serum not patient's by cold Abs (anti I), Serum of donor + RBCs of patient \rightarrow agglutination/ lysis.

Contain Ab against hidden Ag.

Sucrose Lysis test:

Patient RBCs + sucrose solution _____ activation of Classic Pathway of complement. **PNH:** +ve lysis. **HEMPAS:** no lysis.

Table 3: D.D : of HEMPAS:

	HEMPAS	PNH
Sucrose Lysis test:	-ve	+ve
Acidified serum lysis test (Ham's test):	Cells r lysed by donor serum Only & not by patient's serum	Cells r lysed by acidified patient's or donor's serum (by both)
Cause:	Presence of IgM , complement fixing naturally occuring Abs≠ specific Ag on RBCs of HEMPAS	↑ sensitivity to Complement

Table 4: D.D of CDA type III:

	Type III CDA	Erythroleukaemia (M6)
Degree of anaemia:	mild	Severe
Thrombocytopenia:	-	+
CBC:	No myeloblasts	Myeloblasts
	No normoblasts	normoblasts
Retics:	N or slightly	
BM:	Giant erythroblasts	Pro erythroblasts
	contain 12 nucleii	Myeloblasts
	Basophilic	
	stippling	

Management of CDA:

Mild anaemia \rightarrow no intervention.

Severe anaemia \longrightarrow minimal transfusion to avoid iron overload. If regular transfusion is needed \longrightarrow iron chelation.

Anaemia of chronic renal failure

Mechanisms:

1- Dilutional anaemia:

due to 🛉 plasma volume.

2- Aplastic anaemia:

due to : failure of Epo production, or failure to respond to Epo.

3-Haemolytic anaemia:

urea, creatinine \rightarrow direct injury to RBCs \downarrow life span. instability of membrane ATPase & glutathione. burning of RBCs: by heat labile non dialyzable material.

4- Deficiency anaemia:

A- Microcytic hypochromic anaemia:

- Fe def. anaemia due to hge from GIT or menorrhagia.
- In nephrotic syndrome: loss of many proteins including Transferrin.
- Defective iron reutilization an. of chronic dis.

B- Megaloblastic anaemia:

due to loss of folate in dialysis.

5- Bleeding tendency:

due to platelet dysfunction as bleeding from GIT & mennorrhagia.

C/P:

manifestations of renal failure.

C/P of anaemia.

Lab:

CBC:

- NNA e' \downarrow retics.
- Sometimes MHA or even megaloblastic an.
- RBCs r burr shaped or triangular.
- WBCs & platelets r N.

BM:

- Normocellular e' no abnormal cells.
- Sometimes hypocellular.
- There may be compensatory 1 in erythroid activity.

ttt:

- Mild anaemia \longrightarrow no ttt.
- Ideal ttt ____ dialysis + Epo.
- Transfusion if necessary.

Anaemia of Endocrinal diseases

It is due to \downarrow Epo & other hormones.

Types:

A- Anaemia of pituitary deficiency: (Hypo pituitirism):

Leads to aplastic an. 2ry to thyroid H., GH, adrenal & gonadal H.

B- Anaemia of thyroid gland:

1-Hypothyrodism:

aplastic an. NNA

MHA: due to menorrhagia, \downarrow HCL, \downarrow Fe absorption. macrocytic: due to IF Abs.

2- Hyper thyrodism:

Haemolytic an. due to shortened life span of RBCs.

C- Anaemia of adrenal gland: (Addission's disease): Aplastic an. NNA.

D- Anaemia of Gonadal disease: (Hypo gonadism): ↓ Androgens → Aplastic an.

<u>Myelophthesic Anaemia</u> <u>= BM Replacement</u> <u>= Alteration of HIM</u>

Def:

Anaemia or pancytopenia due to BM infilteration (BM is replaced by non marrow elements) e.g: leukaemia, associated e' leucoerythroblastic reaction.

Causes:

- Metastasis _ Ca breast.
- Leukaemia, lymphoma, MM.
- Miliary T.B.
- Metabolic disorders : Gaucher, Neimen Pick.

Pathogenesis:

- Ectopic cells secrete inhibitory factors → inhibit haemopoietic cs.
- BM become crowded by infiltration
 ineffective erythropoiesis.
- Lodge in spleen \rightarrow extra medullary haematopoiesis.
- This infilteration disturbs HIM→ release of immature cs in P.B.

Ectopic cs multiply in BM \rightarrow irritation of BM \rightarrow release of immature cells in P.B.

Diagnosis:

CBC:

RBCs:

NNA e' anisocytosis, poikilocytosis & tear drops (in M.F).

 \downarrow Retics.

WBCs & platelets: N or ↓ or ↑ according to the cause. **Leucoerythroblastic picture:**

immature RBCs (normo) & immature WBCs (staff, Juv).

BM: Infilteration e' metastatic cs (or according to cause).BM biopsy: From tender bone is essential for diagnosis .

Table 5: causes of pancytopenia:

Decreased bone marrow function

Aplasia Acute leukaemia, myelodysplasia, myeloma Infiltration with lymphoma, solid tumors, tuberculosis Megaloblastic anaemia Paroxysmal nocturnal haemoglobinuria Myelofibrosis Haemophagocytic syndrome <u>Increased peripheral destruction</u>

Splenomegaly